Resistant bacteria meet their match with custom antibiotics

Bacterial resistance is a growing problem. About 2.8 million people are infected by resistant bacteria or fungi each year, leading to 35,000 deaths. Scientists at the UCSF School of Pharmacy have shown that engineering small molecular changes into some antibiotics can restore their effectiveness in stopping the growth of drug-resistant bacteria.

Ian Seiple, PhD, faculty member in the School’s Department of Pharmaceutical Chemistry and the UCSF Cardiovascular Research Institute, systematically modified a group of antibiotics to skirt the defenses of drug-resistant bacteria.

Seiple’s revamped antibiotics beat back these bacteria. He then worked with James Fraser, PhD, faculty member in the Department of Bioengineering and Therapeutic Sciences, to understand how these modifications work.

He provides an overview of the research, which was published September 23 in Nature, in the video below.

Ian Seiple, PhD, explains how he improved antibiotics to make them effective against resistant bacteria. 


Customizable Synthetic Antibiotic Outmaneuvers Resistant Bacteria (UCSF News)

Synthetic group A streptogramin antibiotics that overcome Vat resistance (Nature)

About the School: The UCSF School of Pharmacy is a premier graduate-level academic organization dedicated to improving health through precise therapeutics. It succeeds through innovative research, by educating PharmD health professional and PhD science students, and by caring for the therapeutics needs of patients while exploring innovative new models of patient care. The School was founded in 1872 as the first pharmacy school in the American West. It is an integral part of UC San Francisco, a leading university dedicated to promoting health worldwide.