Logic gates allow bacteria to work like computers

Logic gates, similar to those that form the basis of silicon computing, can now be inserted into bacteria via genetic engineering, making it possible to manipulate bacteria to perform complicated tasks. This finding will ultimately enable cells to be programmed with more intricate functions, allowing cells to produce pharmaceuticals, materials, and industrial chemicals. The technique also has potential for application in agriculture. Christopher Voigt, PhD, synthetic biologist and UCSF School of Pharmacy faculty member, is senior author of the research paper that reveals these findings in the online edition of Nature, December 8, 2010.

“We think of electronic currents as doing computation, but any substrate can act like a computer, including gears, pipes of water, and cells,” said Voigt.

The lead author of the paper is Alvin Tamsir, a PhD student in UCSF’s tetrad graduate program. Jeffrey J. Tabor, PhD, in the UCSF School of Pharmacy, is a co-author.

Research paper

Robust multicellular computing using genetically encoded NOR gates and chemical 'wires'

More

UCSF team develops "logic gates" to program bacteria as computers

Tags

Category:
Sites:
School of Pharmacy, Department of Pharmaceutical Chemistry, PharmD Degree Program, BMI, QBC, CCB, Bioinformatics, Biophysics

About the School: The UCSF School of Pharmacy aims to solve the most pressing health care problems and strives to ensure that each patient receives the safest, most effective treatments. Our discoveries seed the development of novel therapies, and our researchers consistently lead the nation in NIH funding. The School’s doctor of pharmacy (PharmD) degree program, with its unique emphasis on scientific thinking, prepares students to be critical thinkers and leaders in their field.